1,061 research outputs found

    Discussion of "Frequentist coverage of adaptive nonparametric Bayesian credible sets"

    Get PDF
    Discussion of "Frequentist coverage of adaptive nonparametric Bayesian credible sets" by Szab\'o, van der Vaart and van Zanten [arXiv:1310.4489v5].Comment: Published at http://dx.doi.org/10.1214/15-AOS1270D in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Adaptive confidence balls

    Get PDF
    Adaptive confidence balls are constructed for individual resolution levels as well as the entire mean vector in a multiresolution framework. Finite sample lower bounds are given for the minimum expected squared radius for confidence balls with a prespecified confidence level. The confidence balls are centered on adaptive estimators based on special local block thresholding rules. The radius is derived from an analysis of the loss of this adaptive estimator. In addition adaptive honest confidence balls are constructed which have guaranteed coverage probability over all of RN\mathbb{R}^N and expected squared radius adapting over a maximum range of Besov bodies.Comment: Published at http://dx.doi.org/10.1214/009053606000000146 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonparametric estimation over shrinking neighborhoods: Superefficiency and adaptation

    Get PDF
    A theory of superefficiency and adaptation is developed under flexible performance measures which give a multiresolution view of risk and bridge the gap between pointwise and global estimation. This theory provides a useful benchmark for the evaluation of spatially adaptive estimators and shows that the possible degree of superefficiency for minimax rate optimal estimators critically depends on the size of the neighborhood over which the risk is measured. Wavelet procedures are given which adapt rate optimally for given shrinking neighborhoods including the extreme cases of mean squared error at a point and mean integrated squared error over the whole interval. These adaptive procedures are based on a new wavelet block thresholding scheme which combines both the commonly used horizontal blocking of wavelet coefficients (at the same resolution level) and vertical blocking of coefficients (across different resolution levels).Comment: Published at http://dx.doi.org/10.1214/009053604000000832 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A complement to Le Cam's theorem

    Get PDF
    This paper examines asymptotic equivalence in the sense of Le Cam between density estimation experiments and the accompanying Poisson experiments. The significance of asymptotic equivalence is that all asymptotically optimal statistical procedures can be carried over from one experiment to the other. The equivalence given here is established under a weak assumption on the parameter space F\mathcal{F}. In particular, a sharp Besov smoothness condition is given on F\mathcal{F} which is sufficient for Poissonization, namely, if F\mathcal{F} is in a Besov ball Bp,qα(M)B_{p,q}^{\alpha}(M) with αp>1/2\alpha p>1/2. Examples show Poissonization is not possible whenever αp<1/2\alpha p<1/2. In addition, asymptotic equivalence of the density estimation model and the accompanying Poisson experiment is established for all compact subsets of C([0,1]m)C([0,1]^m), a condition which includes all H\"{o}lder balls with smoothness α>0\alpha>0.Comment: Published at http://dx.doi.org/10.1214/009053607000000091 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On adaptive estimation of linear functionals

    Get PDF
    Adaptive estimation of linear functionals over a collection of parameter spaces is considered. A between-class modulus of continuity, a geometric quantity, is shown to be instrumental in characterizing the degree of adaptability over two parameter spaces in the same way that the usual modulus of continuity captures the minimax difficulty of estimation over a single parameter space. A general construction of optimally adaptive estimators based on an ordered modulus of continuity is given. The results are complemented by several illustrative examples.Comment: Published at http://dx.doi.org/10.1214/009053605000000633 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonquadratic estimators of a quadratic functional

    Get PDF
    Estimation of a quadratic functional over parameter spaces that are not quadratically convex is considered. It is shown, in contrast to the theory for quadratically convex parameter spaces, that optimal quadratic rules are often rate suboptimal. In such cases minimax rate optimal procedures are constructed based on local thresholding. These nonquadratic procedures are sometimes fully efficient even when optimal quadratic rules have slow rates of convergence. Moreover, it is shown that when estimating a quadratic functional nonquadratic procedures may exhibit different elbow phenomena than quadratic procedures.Comment: Published at http://dx.doi.org/10.1214/009053605000000147 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal adaptive estimation of a quadratic functional

    Get PDF
    Adaptive estimation of a quadratic functional over both Besov and LpL_p balls is considered. A collection of nonquadratic estimators are developed which have useful bias and variance properties over individual Besov and LpL_p balls. An adaptive procedure is then constructed based on penalized maximization over this collection of nonquadratic estimators. This procedure is shown to be optimally rate adaptive over the entire range of Besov and LpL_p balls in the sense that it attains certain constrained risk bounds.Comment: Published at http://dx.doi.org/10.1214/009053606000000849 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An adaptation theory for nonparametric confidence intervals

    Get PDF
    A nonparametric adaptation theory is developed for the construction of confidence intervals for linear functionals. A between class modulus of continuity captures the expected length of adaptive confidence intervals. Sharp lower bounds are given for the expected length and an ordered modulus of continuity is used to construct adaptive confidence procedures which are within a constant factor of the lower bounds. In addition, minimax theory over nonconvex parameter spaces is developed.Comment: Published at http://dx.doi.org/10.1214/009053604000000049 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Adaptive confidence intervals for regression functions under shape constraints

    Get PDF
    Adaptive confidence intervals for regression functions are constructed under shape constraints of monotonicity and convexity. A natural benchmark is established for the minimum expected length of confidence intervals at a given function in terms of an analytic quantity, the local modulus of continuity. This bound depends not only on the function but also the assumed function class. These benchmarks show that the constructed confidence intervals have near minimum expected length for each individual function, while maintaining a given coverage probability for functions within the class. Such adaptivity is much stronger than adaptive minimaxity over a collection of large parameter spaces.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1068 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimation and confidence sets for sparse normal mixtures

    Get PDF
    For high dimensional statistical models, researchers have begun to focus on situations which can be described as having relatively few moderately large coefficients. Such situations lead to some very subtle statistical problems. In particular, Ingster and Donoho and Jin have considered a sparse normal means testing problem, in which they described the precise demarcation or detection boundary. Meinshausen and Rice have shown that it is even possible to estimate consistently the fraction of nonzero coordinates on a subset of the detectable region, but leave unanswered the question of exactly in which parts of the detectable region consistent estimation is possible. In the present paper we develop a new approach for estimating the fraction of nonzero means for problems where the nonzero means are moderately large. We show that the detection region described by Ingster and Donoho and Jin turns out to be the region where it is possible to consistently estimate the expected fraction of nonzero coordinates. This theory is developed further and minimax rates of convergence are derived. A procedure is constructed which attains the optimal rate of convergence in this setting. Furthermore, the procedure also provides an honest lower bound for confidence intervals while minimizing the expected length of such an interval. Simulations are used to enable comparison with the work of Meinshausen and Rice, where a procedure is given but where rates of convergence have not been discussed. Extensions to more general Gaussian mixture models are also given.Comment: Published in at http://dx.doi.org/10.1214/009053607000000334 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore